Archive: May 2023

How Do You Extinguish a Lithium Battery Fire?

Leave a Comment

Today, lithium-ion batteries are found in many electronics, from smartphones to medical devices to cars. They provide reliable power with recharging capabilities. However, the popularity of this type of battery requires knowledge of what to do in the event of a lithium battery fire. Specializing in flame-retardant materials and fabrics, Tex Tech is an industry expert in handling this type of hazard.

Learn the risks related to lithium batteries, how to prevent a fire, and what to do to put out a lithium battery fire.

CarbnX Non Flammable

Discover Our Non-Flammable Textiles

Why Do Lithium Batteries Catch Fire?

If a lithium battery overheats, it can burst into flames. This thermal instability, referred to as thermal runaway, happens when flaming gases are vented from the lithium-ion cells in the battery. The overheating of one failing cell causes a chain reaction in the other cells. The reaction can happen within milliseconds to hours, depending on how quickly each cell fails. The exothermic heat given off during the reaction may be sufficient to start a fire.

Triggers for lithium battery fires include:

  • Short circuits. Improper storage, damage, and metal dust left over from manufacturing can cause circuits to short, leading to combustion.
  • Overheating. Extreme temperatures on loading docks, cargo holds, or tarmacs can lead to overheating or fire during transit or storage.
  • Rough handling. Dropping a battery or jostling it excessively during transport or use can set off thermal runaway.
  • Physical damage. Damage from shredding or dismantling a battery during recycling operations can result in an explosion.
  • Wet/humid conditions. Rainwater, salty air, and humidity might cause short circuits and trigger thermal runaway even without prior damage to the battery.

How to Put Out a Lithium Battery Fire

In the case of a lithium battery fire, there are several ways to extinguish it based on the size and type of battery.

Class D fire extinguishers are effective against lithium-metal battery fires. Lithium-ion battery fires are Class B fires, indicating the presence of flammable liquids, so a standard dry chemical or ABC extinguisher can put them out. Lithium battery fire extinguishers counteract the liquid electrolytes in the battery that create conductive pathways.

Small lithium batteries contain very little lithium, so they can be doused with water. To put out large lithium-ion battery fires, use a foam extinguisher containing CO2, powder graphite, ABC dry chemical, or sodium carbonate.

In battery pack fires, each cell may burn on a different timeline. Place the battery pack in a protected outdoor space to allow it to completely burn out.

If a fire cannot be extinguished, let the battery burn out in a controlled way. Prevent the fire from spreading by soaking the surrounding area with water.

CarbonX

How to Prevent a Lithium Battery Fire

Recognizing the warning signs of a failing lithium battery is paramount to preventing a fire. Unusual heat, noise, smoke, odor, or swelling are all indications that the battery is failing.

Follow these tips to prevent a lithium battery fire from taking place.

  1. Buy batteries from reputable manufacturers.
  2. Never try to recharge non-rechargeable batteries.
  3. Once a charging cycle is complete, disconnect the battery from the charger.
  4. Use the charger that came with the battery or one approved as compatible by the manufacturer.
  5. Keep batteries away from extreme temperatures.
  6. Charge batteries in a fire-safe charging bag, if possible.
  7. Inspect batteries after they are first installed and periodically after recharging. If they appear damaged, do not recharge.
  8. Remove lithium-ion batteries from items before storage.

If a charging device emits excessive heat, unplug it from the power source and store it away from combustible objects until the device has cooled down. If necessary, replace the battery or call the fire department.

Choose Tex Tech for Lithium Battery Fire Safety

Lithium-ion batteries allow us many conveniences. To use these power supplies responsibly, we should be aware of how to prevent and put out lithium-ion battery fires. Though these events are rare, it is best to be prepared.

Tex Tech is a leading manufacturer of high-performance industrial textiles, including flame-retardant fabrics for high-temperature or fire applications. Contact us or request a quote to learn more about how our products and capabilities can serve you.

Thermal Protection Systems and Materials

Leave a Comment

The term thermal protection system (TPS) refers to various materials applied externally to the outer structural skin on an orbiter to maintain acceptable temperatures, especially for the reentry phase of a mission. Materials used for a TPS are selected for their high-temperature stability and weight efficiency.

Space vehicles that enter the earth’s atmosphere require thermal protection systems to protect them from aerodynamic heating. The TPS system used by space vehicles inhibits the conduction of heat on the interior of the vehicle by combining an underlying layer of thermal insulation with high-temperature resistant surface materials.

Aerospace And Thermal Protective Systems

Thermal Protective Systems & Materials

Thermal Protection System Materials

Friction with the atmosphere during re-entry produces extreme temperatures that require specialized shielding systems to protect space vehicles. In addition to heat, space vehicle thermal protection systems also shield systems and the airframe from the extremely cold conditions that occur during parts of orbit. A TPS is produced using the following materials:

Reinforced Carbon Carbon (RCC)

RCC is a strong all-carbon composite. It is light gray and able to withstand the aerodynamic forces of launch and re-entry, which reach up to 800 lbs per sq. ft.

Felt Reusable Surface Insulation (FRSI)

Felt Reusable Surface Insulation (FRSI) is a type of protective blanket material that shields orbiter surfaces from high temperatures. It protects surfaces from heat between 350 °F to 700 °F.

Reusable Surface Insulation Tiles

Space vehicle tiles come in two types: white for low-temperature applications, and black for high temperatures. High-temperature reusable surface insulation tiles utilize a black borosilicate glass coating that has an emittance value higher than 0.8. They protect areas of the vehicle which reach temperatures up to 2,300 °F.

Low-temperature reusable insulation tiles are coated in a white substance that contains the necessary optical properties to maintain on-orbit temperatures. These low-temperature reusable insulation tiles are placed on vehicle areas that have the potential to reach a maximum of 1,200 °F.

Tile Bonding

The bonding agent that attaches tiles to the vehicle surface is a type of silicone adhesive. Silicones are an ideal bonding agent for these types of applications. They retain excellent bond strength during the high temperatures of re-entry and are also flexible at the low temperatures experienced during orbit.

Legacy TPS Products

Legacy materials are often difficult to source due to low volumes, and lack of demand for years, or even decades. Tex Tech is the only US company that has re-created these types of products to NASA specs to provide exceedingly well characterized materials that orbital vehicle designers can utilize with confidence.

Infused Stabilized Ablative Insulation Felt

Our system replaces a traditional single use cork TPS with a higher performance multi-use composite system that relies on a fiber reinforcing structure to increase the erosion resistance. Tex Tech produces low temperature ablative systems using felts that have been stabilized with a high char yield silicone. This silicone can also be customized further to meet low out-gas requirements when needed.

Multi-layered Felt Hybrids (MLF)

MLF takes the concept of MLI (Multi-Layered Insulation) and adapts it for use with needle-punched hybrid structures rather than laminated films. Carbonizing Assembly may be used to fabricate unique precursor structures for C/C or C/SiC. Within this assembly a non-woven felt is sandwiched between two or more woven fabric layers. Once converted to C/C or C/SiC, the assembly becomes a highly insulating composite with high thermal stability.

Aerospace And Thermal Protective Systems Video

Requirements of a Thermal Protection System

The amount of pressure and aerodynamic heating that occurs during launch and re-entry varies according to vehicle type, shape, and trajectory. To provide adequate protection, the following requirements must be met for all thermal protection systems.

  • Heat load. Regulating the flow of heat into and out of the vehicle is the main role of thermal protection systems. In most situations, a TPS is designed around the aerodynamic heating during a vehicle’s re-entry into the Earth’s atmosphere. The TPS system must be able to withstand high temperatures without excessive degradation of material properties.
  • Mechanic loads. Extreme aerodynamic pressure, as well as in-plane inertial, dynamic, and acoustic loads, are all mechanical loads on the TPS. The TPS must withstand these loads without failure.
  • Deflection limits. The TPS shapes the vehicle’s aerodynamic profile. Surface deflections of the TPS need to be below a certain limit to maintain this aerodynamic profile and prevent local overheating and system failure.
  • Impact loads. The TPS can be subjected to many types of impact during installation, launch, flight, and landing. Having adequate impact resistance is an important requirement of a TPS.
  • Chemical deterioration. High surface temperatures during re-entry make the TPS susceptible to oxidation. It may also be altered during maintenance.
  • Low-cost operability. A TPS will require maintenance throughout its life, in addition to the initial fabrication and installation costs. A TPS should be easily replaceable or repairable as well as designed to withstand a certain amount of damage without requiring immediate repair.
  • Lightweight. Due to the large amount of space that a TPS occupies, it makes up a majority of the launch weight. To prevent the need for increased fuel requirements, a TPS must be as lightweight as possible.

TPS Solutions from Tex Tech

Tex Tech Industries is proud to be an industry leader in high-performance textile manufacturing. Since 1904, we have been delivering the highest quality products available for the most challenging applications. Our expert research and development team and state-of-the-art facilities allow us to provide the high-performance textile solutions the aerospace industry demands. For more information about our advanced TPS solutions or our other textile products and services, please contact us or request a quote today.